Graph Analytics using Partition-centric Processing

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna
{klakhoti, rajgopak, prasanna} @ usc.edu

Introduction and Background

Graph analytics is widely used for various application domains

| Social network | Internet | Road Network |

Challenges

- Communication: volume, irregularity
- Synchronization: atomics, locks

SHARP1 Toolkit for DARPA HIVE

- Novel parallel programming models
- Efficient memory data layouts

Partition-centric Processing

NOVEL GRAPH ABSTRACTION

- Center of computation → vertex, edge, partition (cacheable set of vertices)
- Graph is viewed as a set of links between vertices and partitions

COMPUTATION MODEL

- Gather-Apply-Scatter (GAS) programming model
 - Scatter vertex values as updates
 - Gather incoming updates to compute new vertex values
- Statically allocate bins for updates
 - Process multiple partitions in parallel
 - Asynchronous within each phase → no locks/atomics
- Vertex data of partition cached → low latency random accesses

COMMUNICATION MODEL

- Volume Reduction → send updates to nodes partitions
 - Node labeling optimization
- Irregularity → only 1 bin is written by a thread at a time. Random DRAM accesses avoided.

Results on PageRank

Platform: Intel Xeon E5-2650 v2 Ivy-bridge, 16-cores

Baselines: Pull direction PageRank (PDPR), state-of-the-art Vertex-centric GAS (BVGAS)

Datasets: upto 100 M vertices & 1.95 B edges

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Origin</th>
<th>GOrder</th>
<th>Origin</th>
<th>GOrder</th>
<th>Origin</th>
<th>GOrder</th>
</tr>
</thead>
<tbody>
<tr>
<td>gplus</td>
<td>13.1</td>
<td>7.4</td>
<td>9.3</td>
<td>9.3</td>
<td>6.6</td>
<td>5.1</td>
</tr>
<tr>
<td>pld</td>
<td>24.5</td>
<td>10.7</td>
<td>12.6</td>
<td>12.5</td>
<td>9.4</td>
<td>6.1</td>
</tr>
<tr>
<td>web</td>
<td>7.5</td>
<td>7.6</td>
<td>25.6</td>
<td>21.3</td>
<td>8.5</td>
<td>8.4</td>
</tr>
<tr>
<td>kron</td>
<td>18.1</td>
<td>10.8</td>
<td>19.9</td>
<td>19.5</td>
<td>10.4</td>
<td>7.5</td>
</tr>
<tr>
<td>twitter</td>
<td>68.2</td>
<td>31.6</td>
<td>28.8</td>
<td>28.2</td>
<td>19.4</td>
<td>13.4</td>
</tr>
<tr>
<td>sdd</td>
<td>65.1</td>
<td>23.8</td>
<td>37.8</td>
<td>37.8</td>
<td>26.9</td>
<td>15.6</td>
</tr>
</tbody>
</table>

TABLE: DRAM communication (in GB) per iteration with original and optimized node labeling

Summary of Comparison with state-of-the-art (IPDPS’17 best paper)

- 2.7 × average speedup
- 1.7 × average reduction in communication volume
- 1.6 × higher sustained memory bandwidth
- Performance improves further with graph locality

This work is supported by the Defense Advanced Research Projects Agency (DARPA) under Contract Number FA8750-17-C-0086.

1. projectsharp.usc.edu