I. Motivation

- Decoding mood from neural activity:
 - Can enable personalized treatment of mood disorders such as depression and anxiety
 - Can help us understand the neural processes underlying mood regulation

- Decoding an individual's mood from neural activity has not been demonstrated.

- Prior studies:
 - Have used fMRI which would not be practical for closed-loop stimulation therapy
 - Have only found brain regions related to mood across human populations, but have not decoded an individual's mood over time

- Our goal:
 - Identify mood-predictive networks in individuals
 - Decode mood variations over time in individuals

II. Methods

1. Datasets

- Multi-day intracranial recordings from 6 epilepsy patients (Chang Lab at UCSF).
- Self-reports of mood via Immediate Mood Scaler (IMS) questionnaire

2. Modelling framework

- Evaluate with leave-one-out cross-validation
- Repeat same modeling for randomly generated mood to assess significance

III. Results

1. Mood could be decoded in all individuals

2. Identified mood-predictive networks were largely in the limbic system

3. Spectro-spatial neural features were tuned to mood variations over time

IV. Conclusions

- Demonstrated for the first time that mood variations can be decoded from human intracranial neural recordings
- Identified mood-predictive neural features were distributed largely in the limbic system
- Spectro-spatial features in identified networks were tuned to mood variations
- These results demonstrate the feasibility of real-time, chronic mood decoding