Temporal Ensemble Learning of Univariate Methods for Short Term Load Forecasting in Smart Grids

Chung Ming Cheung
Department of Computer Science

Rajgopal Kannan, and Viktor K. Prasanna
Department of Electrical Engineering

Introduction
- Accurate short term load forecasting (STLF) essential for facilitating demand response programs
- Predict following 1 hour load given history
- Existing work have shown simpler models work better than neural networks for STLF under 6 hours horizon
- We propose using an ensemble of models by partitioning the dataset temporally to improve existing models

Experiments
- We evaluate the models based on a 5 month dataset of 50k aggregated user load in LA
- We test the ensemble method on:
 - Kernel Regression (KR)
 - Support Vector Regression (SVR)
 - Multi-layer Perceptron (MLP)
 - Recurrent Neural Network (RNN)
- Evaluation measures:
 - Mean Average Percentage Error (MAPE)
 - Root Mean Squared Error (RMSE)

<table>
<thead>
<tr>
<th>Ensemble</th>
<th>MAPE(%)</th>
<th>RMSE</th>
<th>MAPE(%)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR</td>
<td>1.03</td>
<td>124.41</td>
<td>1.16</td>
<td>158.13</td>
</tr>
<tr>
<td>SVR</td>
<td>1.05</td>
<td>126.41</td>
<td>1.50</td>
<td>186.97</td>
</tr>
<tr>
<td>MLP</td>
<td>2.63</td>
<td>292.52</td>
<td>1.56</td>
<td>181.10</td>
</tr>
<tr>
<td>RNN</td>
<td>2.58</td>
<td>266.75</td>
<td>1.56</td>
<td>200.54</td>
</tr>
</tbody>
</table>

Model
- Exploit regularity in data’s daily patterns
- Instead of one model, train specialized models for specific time of day
- Combine results of models by ridge regression to ensure most models are taken into account for the final output

Discussion
- 21.3% and 11.2% improvement in RMSE and MAPE respectively by using ensemble over single model for KR
- Partitioning the problem by day of time simplified it so that KR and SVR can better model the load

Future Work
- Extend prediction horizon
- Extend the model for prediction of individual users
- Use of mixture models for user profiling should be done to cluster users with similar consumption patterns