Carbon Nanotube Electronics

2016 EE Research Festival

Yu Cao

Advisor: Chongwu Zhou

Dept. of Electrical Engineering
University of Southern California
Motivations

Flexible, wearable & portable electronics

Overcoming non-linear effects to use bandwidth more efficiently
Carbon Nanotubes

- Mechanically flexible
- Inherently linear
- High mobility (up to 10,000 cm²/Vs)
- High current carrying capability
- Small dimension & intrinsic capacitance

Excellent materials for flexible electronics and radio-frequency electronics
Carbon Nanotube Radio-Frequency (RF) Electronics

- Self-aligned source/drain
- Aligned, high-density, ultrahigh semiconducting purity carbon nanotubes

- Well-aligned, high-density (40 tubes/μm), and ultrahigh semiconducting purity carbon nanotubes.
- Channel length: 100–150 nm.

Excellent RF Performance with High Linearity

\[V_{DS} = -1.5 \text{ V} \]

Drain Current (mA)

Gate Voltage (V)

\[V_{DS} = -1.5 \text{ V} \]

V_{GS}: 0 \sim -2 \text{ V}

Step: -0.2 V

Intrinsic \(f_t \) with DDS (GHz)

\[\sqrt{f_t \cdot f_{max}} \text{ (GHz)} \]

Intrinsic \(f_{max} \) with DDS (GHz)

8 GHz & 8.3 GHz

\[\|P_3\| = 22 \text{ dBm} \]

Input Power (dBm)
Carbon Nanotube Ultra-Flexible Electronics

Carbon Nanotube & IGZO for CMOS Flexible Electronics

501-stage ring oscillator

Yu Cao, et al, Nature Communications 2014, 5, 4097
Thanks for your attention!

http://nanolab.usc.edu/