Bandwidth Optimizations for 3D Memory Processing
Shreyas G. Singapura, Rajgopal Kannan and Viktor K. Prasanna

Introduction & Motivation
• High performance processor: Frequency, # cores
• Memory Wall
 • Speed gap b/n memory and processors
 • Low bandwidth, high latency
• Solution: 3D Memories

Challenges
• Large design space due to large number of parameters
• Row activation overhead for every access
• Low page hit rate degrades bandwidth
• Accessing different rows: activation energy

Modeling 3D Memory
• Timing parameters
 • different column
 • different rows
 • different banks
 • different layers

Optimized Data Layout
• Exploit parallelism at all levels:
 • Distribute elements across vaults
 • Inter-layer pipelining (t_{layer})
• Exploit large number of banks:
 • Hide t_{col} and t_{row}

FFT

On-chip memory reduced by a factor of $\sqrt{c} \times$

16x reduction in on-chip memory

Baseline Optimized

2048 8192 32768

Problem Size (N)

Execution Time (ms)

100000
10000
1000
100
10
1

Execution Time reduced factor of

Baseline Optimized

2048 8192 32768

Problem Size (N)

PARSEC 2.0 Benchmark
• Memory is organized as a set of N blocks
• Pattern decided by user/algorithm \rightarrow random

Normalized Access Time Comparison

Baseline Optimized Improvement

Swaptions Blackscholes Bodytrack Dedup Ferret

0 0.5 1 1.5 2 2.5

This work has been supported by AFRL under Grant number FA 8750-15-1-0185

(singapur, rajgopak, prasanna)@usc.edu,
http://fpga.usc.edu/