Sudden, Laser-induced Heating Through Silicon Nanopatterning
Ahmed Morsy, Roshni Biswas, Michelle L. Povinelli
Povinelli Nanophotonics Laboratory

Introduction

• Temperature drives a wide variety of chemical/bio-processes.
• Control of temperature on the microscale is useful for lab-on-chip applications.

Patterned Silicon Slab Fano Resonance

- Here: New strategy for temporal control of temperature.

Sudden Laser-induced Heating in Water

Membrane transfer process

Unpatterned

Patterned

Spectrum

Temporal Response

Unpatterned

Spatial transfer process

Patterned

Programmable Heating

Simulation

Experiment

Opto-thermo-fluidic simulation

\[\frac{\partial T(x, y, z, t)}{\partial t} = \nabla \cdot (k \nabla T(x, y, z, t)) + P_{abs}(t), \]

\[P_{abs}(t) = P_{in} \gamma \frac{2\gamma \rho s C s}{\omega_0^2 + (\omega_0^2)^2 + (\dot{\gamma} + \gamma_i^2)^2} \]

Turbulence, Microbubble Formation and Trapping

Heat-induced convection and microbubble generation

Spot-size tuning

1μm polystyrene particle assembly

Conclusions

• All-silicon, laser-induced nanoheater is proposed and demonstrated
• Operates in both air and water
• Time-dependent temperature response can be “programmed” into design or controlled with wavelength
• Generation of controllable micro-bubbles was demonstrated
• Heat-induced convection has been used to trap microparticles to the hot spot

This work is funded by the Army Research Office PECASE Award under Grant W911NF0910473, and the National Science Foundation CAREER award under grant No. 0846143