VOCAL TRACT AREA FUNCTION ESTIMATION
FROM VOLUMETRIC MRI

Zisis Iason Skordilis, Asterios Toutios, Johannes Toger, Shrikanth S. Narayanan

Signal Analysis and Interpretation Lab (SAIL), EE Dept., USC

1. Introduction
- Vocal tract shape determines acoustic properties of speech signal
- Area function: representation of vocal tract shape
 - Simplifying assumption: 1D wave propagation in vocal tract
 - Concatenated tubes model of vocal tract
 - Cross-sectional areas of tubes = area function
- Goal: Directly measure area function from 3D-MRI

2. Dataset
- Volumetric MRI
 - Sustained contextualized continuants
 - Vowels (e.g. beet, bit, bart, bet, bat, pot, bart)
 - Fricatives (e.g. afa, afa, afa, aza)
 - Nasals (ama, ana, anga)
 - Liquids (afa, ara)
 - Accelerated protocol (Yoon et al, 2009): 8s per scan

3. Methodology
- Semi-automatic method (based on Yoon et al, 2013)
 - Improved automation over previous method

I. Denoising
- Anisotropic diffusion

II. Grid line drawing
- Green x = manual landmark

III. Airway centerline estimation
- Gray area = airway seed for region growing

IV. Slice cutting along grid lines and airway area estimation

4. Results
- W = female subject, M = male subject
- Sagittal-to-area conversion
- Real-time evolution of 3D area function from 2D real-time MRI data

5. Future work
- Sagittal-to-area conversion
- Real-time evolution of 3D area function from 2D real-time MRI data

Work supported by NIH DC007124, NSF, and a USC Viterbi Graduate School PhD fellowship